Определители, их вычисление и свойства. Определители квадратных матриц Детерминант матрицы формула

Определитель: det, ||, детерминант.

Определитель - это не матрица, а число.

Как найти определитель матрицы?

Чтобы найти определитель матрицы вводят понятие "минор" . Обозначение: M ij - минор, M ij 2 - минор второго порядка (определитель матрицы 2*2) и т.д.

Чтобы найти минор для элемента a ij , вычеркиваем из матрицы A i-ю строку и j-й столбец. Получаем матрицу размерностью n-1*m-1, находим определитель этой матрицы .

Пример: найти минор второго порядка для элемента a 12 матрицы A:

Вычеркиваем из матрицы A 1-ю строку и 2-й столбец. Получаем матрицу размерностью 2*2, находим определитель этой матрицы :

Таким образом, минор - это не матрица, а число.

Пример: найти определитель (в общем виде) матрицы 2*2 разложением по 1) строке; 2) столбцу:

По строке: det A = a 11 *(-1) 1+1 *M 11 +a 12 *(-1) 1+2 *M 12 = a 11 *1*a 22 +a 12 *(-1)*a 21 =
= a 11 *a 22 -a 12 *a 21

По столбцу: det A = a 11 *(-1) 1+1 *M 11 +a 21 *(-1) 2+1 *M 21 = a 11 *1*a 22 +a 21 *(-1)*a 12 =
= a 11 *a 22 -a 21 *a 12

Несложно увидеть, что получен одинаковый результат.

Таким образом, чтобы найти определитель матрицы 2*2 достаточно из произведения элементов главной диагонали вычесть произведение элементов побочной:

Как быстро вычислить определитель третьего порядка?

Для вычисления определителя третьего порядка используют правило треугольника (или "звездочки").

1. Перемножаем элементы главной диагонали: det(A)=11*22*33...

2. К полученному произведению прибавляем произведение "треугольников с основаниями, параллельными главной диагонали": det(A)=11*22*33+31*12*23+13*21*32...

3. Все, что связано с побочной диагональю, берем со знаком "-". Перемножаем элементы побочной диагонали и вычитаем: det(A)=11*22*33+31*12*23+13*21*32-13*22*31...

4. Аналогично "главным треугольникам" перемножаем побочные и вычитаем: det(A)=11*22*33+31*12*23+13*21*32-13*22*31-11*23*32-33*12*21.

det(A)=11*22*33+31*12*23+13*21*32-13*22*31-11*23*32-33*12*21=
=7986+8556+8736-8866-8096-8316=0

Свойства определителя матрицы.

  • При перестановке местами двух параллельных строк или столбцов определителя его знак меняется на обратный;
  • Определитель, содержащий две одинаковых строки или столбца, равен нулю;
  • Если одну из строк определителя умножить на какое-либо число, то получится определитель, равный исходному определителю, умноженному на это число;
  • При транспонировании матрицы её определитель не меняет своего значения;
  • Если в определителе вместо любой строки записать сумму этой строки и любой другой строки, умноженной на некоторое число, то полученный новый определитель будет равен исходному;
  • Если каждый элемент какой-либо строки или столбца определителя представляем в виде суммы двух слагаемых, то этот определитель может быть разложен на сумму двух соответствующих определителей;
  • Общий множитель элементов какой-либо строки или столбца определителя можно выносить за знак определителя.

Основной числовой характеристикой квадратной матрицы является ее определитель. Рассмотрим квадратную матрицу второго порядка

Определителем или детерминантом второго порядка называется число, вычисленное по следующему правилу

Например,

Рассмотрим теперь квадратную матрицу третьего порядка

.

Определителем третьего порядка называется число, вычисленное по следующему правилу

В целях запоминания сочетания слагаемых, входящих в выражения для определения определителя третьего порядка обычно используют правило Саррюса: первое из трех слагаемых, входящих в правую часть со знаком плюс есть произведение элементов, стоящих на главной диагонали матрицы , а каждое из двух других – произведение элементов, лежащих на параллели к этой диагонали, и элемента из противоположного угла матрицы.

Последние три слагаемые, входящие со знаком минус определяются аналогичным образом, только относительно побочной диагонали.

Пример:

Основные свойства определителей матрицы

1. Величина определителя не изменяется при транспонировании матрицы.

2. При перестановки местами строк или столбцов матрицы, определитель меняет лишь знак, сохраняя абсолютную величину.

3. Определитель, содержащий пропорциональные строки или столбцы равен нулю.

4. Общий множитель элементов некоторой строки или столбца можно выносить за знак определителя.

5. Если все элементы некоторой строки или столбца равны нулю, то и сам определитель равен нулю.

6. Если к элементам отдельной строки или столбца определителя прибавить элементы другой строки или столбца, умноженные на произвольный невырожденный множитель , то величина определителя не изменится.

Минором матрицы называется определитель, полученный вычеркиванием из квадратной матрицы одинакового числа столбцов и строк.

Если все миноры порядка выше , которые можно составить из матрицы, равны нулю, а среди миноров порядка хотя бы один отличен от нуля, то число называется рангом этой матрицы.

Алгебраическим дополнением элемента определителя порядка будем называть его минор порядка, получаемый вычеркиванием соответствующей строки и столбца, на пересечении которых, стоит элемент , взятый со знаком плюс, если сумма индексов равна четному числу и со знаком минус в противном случае.

Таким образом

,

где соответствующий минор порядка.

Вычисление определителя матрицы путем разложения по элементам строки или столбца

Определитель матрицы равен сумме произведений элементов какой- либо строки (какого- либо столбца) матрицы на соответствующие алгебраические дополнения элементов этой строки (этого столбца). При вычислении определителя матрицы таким способом следует руководствоваться следующим правилом: выбирать строку или столбец с наибольшим числом нулевых элементов. Этот прием позволяет значительно сократить объем вычислений.

Пример: .

При вычислении данного определителя, воспользовались приемом разложения его по элементам первого столбца. Как видно из приведенной формулы нет необходимости вычислять последний из определителей второго порядка, т.к. он умножается на ноль.

Вычисление обратной матрицы

При решении матричных уравнений широко используют обратную матрицу. Она в известной степени заменяет операцию деления, которая в явном виде в алгебре матриц отсутствует.

Квадратные матрицы одинакового порядка, произведение которых дает единичную матрицу , называются взаимообратными или обратными. Обозначается обратная матрица и для нее справедливо

Вычислить обратную матрицу можно только для такой матрицы , для которой .

Классический алгоритм вычисления обратной матрицы

1. Записывают матрицу , транспонированную к матрице .

2. Заменяют каждый элемент матрицы определителем, полученным в результате вычеркивания строки и столбца, на пересечении которых расположен данный элемент.

3. Этот определитель сопровождают знаком плюс, если сумма индексов элемента четная, и знаком минус – в противном случае.

4. Делят полученную матрицу на определитель матрицы .

Вычисление определителей n -го порядка:

Понятие определителя n -го порядка

Пользуясь этой статьёй об определителях, вы обязательно научитесь решать задачи вроде следующей:

Решить уравнение:

и многих других, которые так любят придумывать преподаватели.

Определитель матрицы или просто определитель играет важную роль в решении систем линейных уравнений. В общем-то определители и были придуманы для этой цели. Поскольку часто говорят также "определитель матрицы", упомянем здесь и матрицы. Матрица - это прямоугольная таблица, составленная из чисел, которые нельзя менять местами. Квадратная матрица - таблица, у которой число строк и число столбцов одинаково. Определитель может быть только у квадратной матрицы .

Понять логику записи определителей легко по следующей схеме. Возьмём знакомую вам со школьной скамьи систему из двух уравнений с двумя неизвестными:

В определителе последовательно записываются коэффициенты при неизвестных: в первой строке - из первого уравнения, во второй строке - из второго уравнения:

Например, если дана система уравнений

то из коэффициентов при неизвестных формируется следующий определитель:

Итак, пусть дана квадратная таблица, состоящая из чисел, расположенных в n строках (горизонтальных рядах) и в n столбцах (вертикальных рядах). С помощью этих чисел по некоторым правилам, которые мы изучим ниже, находят число, которое и называют определителем n -го порядка и обозначают следующим образом:

(1)

Числа называют элементами определителя (1) (первый индекс означает номер строки, второй – номер столбца, на пересечении которых стоит элемент; i = 1, 2, ..., n; j = 1, 2, ..., n). Порядок определителя – это число его строк и столбцов.

Воображаемая прямая, соединяющая элементы определителя, у которых оба индекса одинаковы, т.е. элементы

называется главной диагональю , другая диагональ – побочной .

Вычисление определителей второго и третьего порядков

Покажем, как вычисляются определители первых трёх порядков.

Определитель первого порядка – это сам элемент т.е.

Определитель второго порядка есть число, получаемое следующим образом:

, (2)

Произведение элементов, стоящих соответственно на главной и на побочной диагоналях.

Равенство (2) показывает, что со своим знаком берётся произведение элементов главной диагонали, а с противоположным – произведение элементов побочной диагонали .

Пример 1. Вычислить определители второго порядка:

Решение. По формуле (2) находим:

Определитель третьего порядка – это число, получаемое так:

(3)

Запомнить эту формулу трудно. Однако существует простое правило, называемое правилом треугольников , которое позволяет легко воспроизвести выражение (3). Обозначая элементы определителя точками, соединим отрезками прямой те из них, которые дают произведения элементов определителя (рис. 1).


Формула (3) показывает, что со своими знаками берутся произведения элементов главной диагонали, а также элементов, расположенных в вершинах двух треугольников, основания которых ей параллельны; с противоположными – произведения элементов побочной диагонали, а также элементов, расположенных в вершинах двух треугольников, которые ей параллельны .

На рис.1 главная диагональ и соответствующие ей основания треугольников и побочная диагональ и соответствующие ей основания треугольников выделены красным цветом.

При вычислении определителей очень важно, как и в средней школе, помнить, что число со знаком минус, умноженное на число со знаком минус, в результате даёт число со знаком плюс, а число со знаком плюс, умноженное на число со знаком минус, в результате даёт число со знаком минус.

Пример 2. Вычислить определитель третьего порядка:

Решение. Пользуясь правилом треугольников, получим



Вычисление определителей n -го порядка

Разложение определителя по строке или столбцу

Для вычисления определителя n -го порядка необходимо знать и использовать следующую теорему.

Теорема Лапласа. Определитель равен сумме произведений элементов какой-либо строки на их алгебраические дополнения, т.е.

Определение . Если в определителе n -го порядка выбрать произвольно p строк и p столбцов (p < n ), то элементы, находящиеся на пересечении этих строк и столбцов, образуют матрицу порядка .

Определитель этой матрицы называется минором исходного определителя. Например, рассмотрим определитель :

Из строк и столбцов с чётными номерами построим матрицу:

Определитель

называется минором определителя . Получили минор второго порядка. Ясно, что из можно построить различные миноры первого, второго и третьего порядка.

Если взять элемент и вычеркнуть в определителе строку и столбец, на пересечении которых он стоит, то получим минор, называемый минором элемента , который обозначим через :

.

Если минор умножить на , где 3 + 2 – сумма номеров строки и столбца, на пересечении которых стоит элемент то полученное произведение называется алгебраическим дополнением элемента и обозначается ,

Вообще, минор элемента будем обозначать , а алгебраическое дополнение ,

(4)

Для примера вычислим алгебраические дополнения элементов и определителя третьего порядка :

По формуле (4) получим

При разложении определителя часто используется следующее свойство определителя n -го порядка:

если к элементам какой-либо строки или столбца прибавить произведение соответствующих элементов другой строки или столбца на постоянный множитель, то значение определителя не изменится.

Пример 4.

Предварительно вычтем из первой и третьей строк элементы четвёртой строки, тогда будем иметь

В четвёртом столбце полученного определителя три элемента – нули. Поэтому выгоднее разложить этот определитель по элементам четвёртого столбца, так как три первых произведения будут нулями. Поэтому

Проверить решение можно с помощью калькулятора определителей онлайн .

А в следующем примере показано, как вычисление определителя любого (в данном случае - четвёртого) порядка можно свести к вычислению определителя второго порядка.

Пример 5. Вычислить определитель:

Вычтем из третьей строки элементы первой строки, а к элементам четвёртой строки прибавим элементы первой строки, тогда будем иметь

В первом столбце все элементы, кроме первого, - нули. То есть, определитель можно уже разложить по первому столбцу. Но нам очень не хочется вычислять определитель третьего порядка. Поэтому произведём ещё преобразования: к элементам третьей строки прибавим элементы второй строки, умноженные на 2, а из элементов четвёртой строки вычтем элементы второй строки. В результате определитель, являющийся алгебраическим дополнением, сам может быть разложен по первому столбцу и нам останется только вычислить определитель второго порядка и не запутаться в знаках:

Приведение определителя к треугольному виду

Определитель, где все элементы, лежащие по одну сторону одной из диагоналей, равны нулю, называется треугольным. Случай побочной диагонали путём изменения порядка строк или столбцов на обратный сводится к случаю главной диагонали. Такой определитель равен произведению элементов главной диагонали.

Для приведения к треугольному виду используется то же самое свойство определителя n -го порядка, которое мы применяли в предыдущем параграфе: если к элементам какой-либо строки или столбца прибавить произведение соответствующих элементов другой строки или столбца на постоянный множитель, то значение определителя не изменится.

Проверить решение можно с помощью калькулятора определителей онлайн .

Свойства определителя n -го порядка

В двух предыдущих параграфах мы уже использовали одно из свойств определителя n -го порядка. В некоторых случаях для упрощения вычисления определителя можно пользоваться другими важнейшими свойствами определителя. Например, можно привести определитель к сумме двух определителей, из которых один или оба могут быть удобно разложены по какой-либо строке или столбцу. Случаев такого упрощения предостаточно и решать вопрос об использовании того или иного свойства определителя следует индивидуально.

Определители и их свойства. Перестановкой чисел 1, 2,..., n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12...n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной) , если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени .

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ обозначает подстановку, в которой 3 переходит в 4, 1 → 2, 2 → 1, 4 → 3. Подстановка называется четной (или нечетной ), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде ,т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида:

, (4.4)

где индексы q 1 , q 2 ,...,q n составляют некоторую перестановку из чисел
1, 2,..., n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (4.4) равен (- 1) q, где q - число инверсий в перестановке вторых индексов элементов.

Определителем n -го порядка, соответствующим матрице (4.3), называется алгебраическая сумма n! членов вида (4.4). Для записи определителя употребляется символ или detA = (детерминант, или определитель, матрицы А).

Свойства определителей

1. Определитель не меняется при транспонировании.

2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.

3. Если в определителе переставить две строки, определитель поменяет знак.

4. Определитель, содержащий две одинаковые строки, равен нулю.

5. Если все элементы некоторой строки определителя умножить на некоторое число k, то сам определитель умножится на k.

6. Определитель, содержащий две пропорциональные строки, равен нулю.

7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых a i j = b j + c j (j = 1,...,n), то определитель равен сумме определителей, у которых все строки, кроме i-ой, - такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов b j , в другом - из элементов c j .

8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором M i j элемента a i j определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента a i j определителя d называется его минор M i j , взятый со знаком (-1) i + j . Алгебраическое дополнение элемента a i j будем обозначать A i j . Таким образом, A i j = (-1) i + j M i j .

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки

d = a i 1 A i 1 + a i 2 A i 2 +... + a i n A i n (i = 1,...,n)

или j- го столбца

d = a 1 j A 1 j + a 2 j A 2 j +... + a n j A n j (j =1,...,n).

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Формула вычисления определителя третьего порядка.

Для облегчения запоминания этой формулы:

Пример 2.4. Не вычисляя определителя , показать, что он равен нулю.

Решение. Вычтем из второй строки первую, получим определитель , равный исходному. Если из третьей строки также вычесть первую, то получится определитель , в котором две строки пропорциональны. Такой определитель равен нулю.

Пример 2.5. Вычислить определитель D = , разложив его по элементам второго столбца.

Решение. Разложим определитель по элементам второго столбца:

D = a 12 A 12 + a 22 A 22 +a 32 A 32 =

.

Пример 2.6. Вычислить определитель

,

в котором все элементы по одну сторону от главной диагонали равны нулю.

Решение. Разложим определитель А по первой строке:

.

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

.

Пример 2.7. Вычислить определитель .

Решение. Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель: , равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.


Квадратной матрице А порядка n можно сопоставить число det А (или |A |, или ), называемое ее определителем , следующим образом:

Определитель матрицы A также называют ее детерминантом . Правило вычисления детерминанта для матрицы порядка N является довольно сложным для восприятия и применения. Однако известны методы, позволяющие реализовать вычисление определителей высоких порядков на основе определителей низших порядков. Один из методов основан на свойстве разложения определителя по элементам некоторого ряда (свойство 7). При этом заметим, что определители невысоких порядков (1, 2, 3) желательно уметь вычислять согласно определению.

Вычисление определителя 2-го порядка иллюстрируется схемой:


Пример 4.1. Найти определители матриц

При вычислении определителя 3-го порядка удобно пользоваться правилом треугольников (или Саррюса), которое символически можно записать так:

Пример 4.2. Вычислить определитель матрицы

det А = 5*1*(-3) + (-2)*(-4)*6 + 3*0*1 — 6*1*1 — 3*(-2)*(-3) — 0*(-4)*5 = -15+48-6-18 = 48-39 = 9.

Сформулируем основные свойства определителей, присущие определителям всех порядков. Некоторые из этих свойств поясним на определителях 3-го порядка.

Свойство 1 («Равноправность строк и столбцов»). Определитель не изменится, если его строки заменить столбцами, и наоборот. Иными словами,

В дальнейшем строки и столбцы будем просто называть рядами определителя .

Свойство 2 . При перестановке двух параллельных рядов определитель меняет знак.

Свойство 3 . Определитель, имеющий два одинаковых ряда, равен нулю.

Свойство 4 . Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

Из свойств 3 и 4 следует, что если все элементы некоторого ряда пропорциональны соответствующим элементам параллельного ряда, то такой определитель равен нулю.

Действительно,

Свойство 5 . Если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.

Например,

Свойство 6. («Элементарные преобразования определителя»). Определитель не изменится, если к элементам одною ряда прибавить соответствующие элементы параллельного ряда, умноженные па любое число.

Пример 4.3 . Доказать, что

Решение: Действительно, используя свойства 5, 4 и 3 подучим

Дальнейшие свойства определителей связаны с понятиями минора и алгебраического дополнения.

Минором некоторого элемента аij определителя n- го порядка называется определитель n — 1-го порядка, полученный из исходного путем вычеркивания строки и столбца, па пересечении которых находится выбранный элемент. Обозначается mij

Алгебраическим дополнением элемента aij определителя называется его минор, взятый со знаком «плюс», если сумма i + j четное число, и со знаком «минус», если эта сумма нечетная. Обозначается Aij :

Свойство 7 («Разложение определителя по элементам некоторого ряда»). Определитель равен сумме произведений элементов некоторого ряда на соответствующие им алгебраические дополнения.