Каким образом матрицу можно умножить на число. Умножение матрицы на число


Данное методическое пособие поможет Вам научиться выполнять действия с матрицами : сложение (вычитание) матриц, транспонирование матрицы, умножение матриц, нахождение обратной матрицы. Весь материал изложен в простой и доступной форме, приведены соответствующие примеры, таким образом, даже неподготовленный человек сможет научиться выполнять действия с матрицами. Для самоконтроля и самопроверки Вы можете бесплатно скачать матричный калькулятор >>> .

Я буду стараться минимизировать теоретические выкладки, кое-где возможны объяснения «на пальцах» и использование ненаучных терминов. Любители основательной теории, пожалуйста, не занимайтесь критикой, наша задача – научиться выполнять действия с матрицами .

Для СВЕРХБЫСТРОЙ подготовки по теме (у кого «горит») есть интенсивный pdf-курс Матрица, определитель и зачёт!

Матрица – это прямоугольная таблица каких-либо элементов . В качестве элементов мы будем рассматривать числа, то есть числовые матрицы. ЭЛЕМЕНТ – это термин. Термин желательно запомнить, он будет часто встречаться, не случайно я использовал для его выделения жирный шрифт.

Обозначение: матрицы обычно обозначают прописными латинскими буквами

Пример: рассмотрим матрицу «два на три»:

Данная матрица состоит из шести элементов :

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

и три столбца:

СТАНДАРТ : когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной , например: – матрица «три на три».

Если в матрице один столбец или одна строка , то такие матрицы также называют векторами .

На самом деле понятие матрицы мы знаем еще со школы, рассмотрим, например точку с координатами «икс» и «игрек»: . По существу, координаты точки записаны в матрицу «один на два». Кстати, вот Вам и пример, почему порядок чисел имеет значение: и – это две совершенно разные точки плоскости.

Теперь переходим непосредственно к изучению действий с матрицами :

1) Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу) .

Вернемся к нашей матрице . Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак :

У нуля, как Вы понимаете, знак не меняется, ноль – он и в Африке ноль.

Обратный пример: . Выглядит безобразно.

Внесем минус в матрицу, сменив у КАЖДОГО элемента матрицы знак :

Ну вот, гораздо симпатичнее получилось. И, самое главное, выполнять какие-либо действия с матрицей будет ПРОЩЕ. Потому что есть такая математическая народная примета: чем больше минусов – тем больше путаницы и ошибок .

2) Действие второе. Умножение матрицы на число .

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО :

Вносить дробь в матрицу НЕ НУЖНО, во-первых, это только затрудняет дальнейшие действия с матрицей, во-вторых, затрудняет проверку решения преподавателем (особенно, если – окончательный ответ задания).

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Из статьи Математика для чайников или с чего начать , мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать.

Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка , то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на , так как все числа матрицы делятся на 2 без остатка .

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

3) Действие третье. Транспонирование матрицы .

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Пример:

Транспонировать матрицу

Строка здесь всего одна и, согласно правилу, её нужно записать в столбец:

– транспонированная матрица.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

4) Действие четвертое. Сумма (разность) матриц .

Сумма матриц действие несложное.
НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ.

Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы и

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы :

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов .

Пример:

Найти разность матриц ,

А как решить данный пример проще, чтобы не запутаться? Целесообразно избавиться от лишних минусов, для этого внесем минус в матрицу :

Примечание: в теории высшей математики школьного понятия «вычитание» нет. Вместо фразы «из этого вычесть это» всегда можно сказать «к этому прибавить отрицательное число». То есть, вычитание – это частный случай сложения.

5) Действие пятое. Умножение матриц .

Какие матрицы можно умножать?

Чтобы матрицу можно было умножить на матрицу нужно, чтобы число столбцов матрицы равнялось числу строк матрицы .

Пример:
Можно ли умножить матрицу на матрицу ?

Значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

Следовательно, выполнить умножение невозможно:

Не так уж редко встречаются задания с подвохом, когда студенту предлагается умножить матрицы, умножение которых заведомо невозможно.

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так.
Например, для матриц, и возможно как умножение , так и умножение

Для того, чтобы произвести умножение матрицы A на произвольное число α, нужно элементы матрицы A умножить на число α, т.е. произведение матрицы на число будет следующим:

Пример 1. Найти матрицу 3A для матрицы

Решение. В соответствии с определением умножим элементы матрицы A на 3 и получим

Это был совсем простой пример умножения матрицы на число с целыми числами. Впереди также простые примеры, но уже такие, где среди множителей и элементов матриц - дроби, переменные (буквенные обозначения), ведь законы умножения действуют не только для целых чисел, так что никогда не вредно их повторить.

Пример 2. A на число α, если
, .

A на α, не забывая, что при умножении дробей числитель первой дроби умножается на числитель первой дроби и произведение записывается в числитель, а знаменатель первой дроби умножается на знаменатель второй дроби и произведение записывается в знаменатель. При получении второго элемента первой строки новой матрицы полученную дробь сократили на 2, это надо делать обязательно. Получаем

Пример 3. Выполнить операцию умножения матрицы A на число α, если
, .

Решение. Умножим элементы матрицы A на α, не путаясь в буквенных обозначениях, не забыв оставить минус перед вторым элементом второй строки новой матрицы, и помня, что результат умножения числа на обратное ему число есть единица (первый элемент третьей строки). Получаем

.

Пример 4. Выполнить операцию умножения матрицы A на число α, если
, .

Решение. Вспоминаем, что при умножении числа в степени на число в степени показатели степеней складываются. Получаем

.

Этот пример, кроме всего прочего, наглядно демонстрирует, что действия умножения матрицы на число могут быть прочитаны (и записаны) в обратном порядке и называется это вынесением постоянного множителя перед матрицей.

В сочетании со сложением и вычитанием матриц операция умножения матрицы на число может образовывать различные матричные выражения, например, 5A − 3B , 4A + 2B .

Свойства умножения матрицы на число

(здесь A, B - матрицы, - числа, 1 - число единица)

1.

2.

3.

Свойства (1) и (2) связывают умножение матрицы на число со сложением матриц. Существует также очень важная связь между умножением матрицы на число и перемножением самих матриц:

т. е. если в произведении матриц один из множителей умножается на число, то и всё произведение будет умножаться на число.

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.

Умножение матрицы на число - это операция над матрицей, в результате которой каждый её элемент умножается на дейсвительное или комплексное число. Выглядит математическим языком это так:

$$ B = \lambda \cdot A \Rightarrow b_{ij} = \lambda a_{ij} $$

Стоит заметить, что получаемая матрица $ B $ в результате должна получаться той же размерности, которой обладала начальная матрица $ A $. Так же можно обратить внимание на такой факт: $ \lambda \cdot A = A \cdot \lambda $, то есть можно менять местами множители и от этого произведение не изменится.

Будет полезным использовать операцию умножение матрицы на число при вынесении общего множителя за пределы матрицы. В этом случае каждый элемент матрицы делится на число $ \lambda $, а сам он выносится перед матрицей.

Свойства

  1. Дистрибутивный закон относительно матриц: $$ \lambda \cdot (A+B) = \lambda A + \lambda B $$Умножение суммы матриц на число можно заменить на сумму произведений каждой отдельной матрицы на данное число
  2. Дистрибутивный закон относительно действительных (комплексных) чисел: $$ (\lambda + \mu) \cdot A = \lambda A + \mu A $$ Умножение матрицы на сумму чисел можно заменить на сумму произведений каждого числа на матрицу
  3. Ассоциативный закон: $$ \lambda \cdot (\mu \cdot A) = (\lambda \cdot \mu) A $$ Удобно использовать если нужно вынести общий множитель из матрицы перед ней, при этом домножая уже стоящий перед ней коэффициент
  4. Есть особое число $ \lambda = 1 $, благодаря которому матрица остаётся неизменной $$ 1 \cdot A = A \cdot 1 = A $$
  5. Умножение матрицы на ноль приводит к тому, что каждый элемент матриц обнуляется и матрица становится нулевой той же размерности, которой была изначально: $$ 0 \cdot A = 0 $$

Примеры решений

Пример
Дано $ A = \begin{pmatrix} 2&-1&4\\0&9&3\\-2&-3&5 \end{pmatrix} $ и действительное число $ \lambda = 2 $. Умножить число на матрицу.
Решение

Записываем математическую операцию умножения и заодно вспоминаем правило, которое гласит: матрица умножается на число поэлементно.

$$ \lambda \cdot A = 2 \cdot \begin{pmatrix} 2&-1&4\\0&9&3\\-2&-3&5 \end{pmatrix} = \begin{pmatrix} 2\cdot 2&2\cdot (-1)&2\cdot 4\\2\cdot 0&2 \cdot 9&2\cdot 3\\2\cdot (-2)&2\cdot (-3)&2\cdot 5 \end{pmatrix} = $$

$$ = \begin{pmatrix} 4&-2&8\\0&18&6\\-4&-6&10 \end{pmatrix} $$

В результате видим, что каждое число стоящее в матрицы удвоилось по отношению к начальному значению.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lambda \cdot A = \begin{pmatrix} 4&-2&8\\0&18&6\\-4&-6&10 \end{pmatrix} $$