Технология изготовления экрана ips ogs. Все, что нужно знать об экранах смартфонов

До массового распространения смартфонов, при покупке телефонов мы оценивали их, главным образом, по дизайну и лишь изредка обращали внимание на функциональные возможности. Времена изменились: теперь все смартфоны имеют примерно одинаковые возможности, а при взгляде только на фронтальную панель, один гаджет едва можно отличить от другого. На передний план вышли технические характеристики устройств, и самой важной среди них для многих является экран. Мы расскажем, что же кроется за терминами TFT, TN, IPS, PLS, и поможем подобрать смартфон с нужными характеристиками экрана.

Типы матриц

В современных смартфонах главным образом применяются три технологии производства матриц: две основаны на жидких кристаллах - TN+film и IPS, а третья - AMOLED - на органических светодиодах. Но прежде чем начать, стоит рассказать об аббревиатуре TFT, являющейся источником множества заблуждений. TFT (thin-film transistor) - это тонкоплёночные транзисторы, которые используются для управления работой каждого субпикселя современных экранов. Технология TFT применяется во всех перечисленных выше типах экранов, включая AMOLED, поэтому, если где-то говорится о сравнении TFT и IPS, то это в корне неверная постановка вопроса.

В большинстве TFT-матриц используется аморфный кремний, но недавно в производство стали внедряться TFT на поликристаллическом кремнии (LTPS-TFT). Главные преимущества новой технологии - уменьшение энергопотребления и размеров транзисторов, что позволяет достигать высоких значений плотности пикселей (более 500 ppi). Одним из первых смартфонов с IPS-дисплеем и матрицей LTPS-TFT стал OnePlus One.

Смартфон OnePlus One

Теперь, когда мы разобрались с TFT, перейдём непосредственно к типам матриц. Несмотря на большое разнообразие разновидностей LCD, все они имеют один и тот же базовый принцип работы: приложенный к молекулам жидких кристаллов ток задаёт угол поляризации света (он влияет на яркость субпикселя). Поляризованный свет затем проходит через светофильтр и окрашивается в цвет соответствующего субпикселя. Первыми в смартфонах появились наиболее простые и дешёвые матрицы TN+film, название которых часто сокращается до TN. Они имеют малые углы обзора (не более 60 градусов при отклонении от вертикали), причём даже при небольших наклонах изображение на экранах с такими матрицами инвертируется. Среди других недостатков TN-матриц - малая контрастность и низкая точность цветопередачи. На сегодняшний день такие экраны используются только в самых дешёвых смартфонах, а подавляющее большинство новых гаджетов имеют уже более совершенные дисплеи.

Наиболее распространённой в мобильных гаджетах сейчас является технология IPS, иногда обозначаемая как SFT. IPS-матрицы появились 20 лет назад и с тех пор выпускались в различных модификациях, число которых приближается к двум десяткам. Тем не менее, выделить среди них стоит те, которые являются наиболее технологичными и активно используются на данный момент: AH-IPS от компании LG и PLS - от компании Samsung, которые весьма близки по своим свойствам, что даже являлось поводом для судебного разбирательства между производителями. Современные модификации IPS имеют широкие углы обзора, которые близки к 180 градусам, реалистичную цветопередачу и обеспечивают возможность создания дисплеев с высокой плотностью пикселей. К сожалению, производители гаджетов практически никогда не сообщают точный тип IPS-матриц, хотя при использовании смартфона различия будут видны невооружённым глазом. Для более дешёвых IPS-матриц характерно выцветание картинки при наклонах экрана, а также невысокая точность цветопередачи: изображение может быть либо слишком «кислотным», либо, напротив, «блёклым».

Что касается энергопотребления, то в жидкокристаллических дисплеях оно по большей части определяется мощностью элементов подсветки (в смартфонах для этих целей используются светодиоды), поэтому потребление матриц TN+film и IPS можно считать примерно одинаковым при совпадающем уровне яркости.

На LCD совершенно не похожи матрицы, созданные на основе органических светодиодов (OLED). В них источником света служат сами субпиксели, представляющие собой сверхминиатюрные органические светодиоды. Так как нет необходимости во внешней подсветке, такие экраны можно сделать тоньше жидкокристаллических. В смартфонах применяется разновидность технологии OLED - AMOLED, которая использует активную TFT-матрицу для управления субпикселями. Именно это позволяет AMOLED отображать цвета, тогда как обычные панели OLED могут быть только монохромными. AMOLED-матрицы обеспечивают самый глубокий чёрный цвет, поскольку для его «отображения» требуется лишь полностью отключить светодиоды. По сравнению с LCD, такие матрицы обладают более низким энергопотреблением, особенно при использовании тёмных тем оформления, в которых чёрные участки экрана вовсе не потребляют энергию. Другая характерная особенность AMOLED - слишком насыщенные цвета. На заре своего появления такие матрицы действительно имели неправдоподобную цветопередачу, и, хотя подобные «детские болячки» давно в прошлом, до сих пор большинство смартфонов с такими экранами имеют встроенную настройку насыщенности, которая позволяет приблизить изображение на AMOLED по восприятию к IPS-экранам.

Другим ограничением AMOLED экранов раньше являлся неодинаковый срок службы светодиодов различных цветов. Через пару лет использования смартфона это могло привести к выгоранию субпикселей и остаточному изображению некоторых элементов интерфейса, в первую очередь - на панели уведомлений. Но, как и в случае с цветопередачей, эта проблема давно ушла в прошлое, и современные органические светодиоды рассчитаны минимум на три года беспрерывной работы.

Подведём краткий итог. Наиболее качественное и яркое изображение на данный момент беспечивают AMOLED-матрицы: даже Apple, по слухам, в одном из следующих iPhone будет использовать такие дисплеи. Но, стоит учитывать, что все новейшие разработки компания Samsung, как основной производитель таких панелей, оставляет себе, а другим производителям продаёт «прошлогодние» матрицы. Поэтому, при выборе смартфона не от Samsung стоит смотреть в сторону качественных IPS-экранов. А вот гаджеты с дисплеями TN+film выбирать ни в коем случае не стоит - сегодня эта технология уже считается устаревшей.

На восприятие изображения на экране может влиять не только технология матрицы, но и рисунок субпикселей. Впрочем, с LCD всё довольно просто: в них каждый RGB-пиксель состоит из трёх вытянутых субпикселей, которые, в зависимости от модификации технологии, могут иметь форму прямоугольника или «галочки».

В AMOLED-экранах всё интереснее. Поскольку в таких матрицах источниками света являются сами субпиксели, а человеческий глаз более чувствителен к чистому зелёному свету, чем к чистому красному или синему, использование в AMOLED того же рисунка, что и в IPS, ухудшило бы цветопередачу и сделало картинку нереалистичной. Попыткой решить эту проблему стала первая версия технологии PenTile, в которой использовались пиксели двух типов: RG (красный-зелёный) и BG (синий-зелёный), состоящие из двух субпикселей соответствующих цветов. Причём, если красные и синие субпиксели имели форму, близкую к квадратам, то зелёные больше напоминали сильно вытянутые прямоугольники. Недостатками такого рисунка были «грязный» белый цвет, зазубренные края на стыке разных цветов, а при низком ppi - четко видимая сетка подложки субпикселей, появляющаяся из-за слишком большого расстояния между ними. К тому же, разрешение, указываемое в характеристиках таких устройств, было «нечестным»: если IPS HD матрица имеет 2764800 субпикселей, то AMOLED HD матрица - всего 1843200, что приводило к видимой невооружённым глазом разнице в чёткости IPS- и AMOLED-матриц с, казалось бы, одинаковой плотностью пикселей. Последним флагманским смартфоном с такой AMOLED матрицей стал Samsung Galaxy S III.

В смартпэде Galaxy Note II южнокорейская компания сделала попытку отказа от PenTile: экран устройства имел полноценные RBG-пиксели, хотя и с необычным расположением субпикселей. Тем не менее, по неясным причинам, в дальнейшем Samsung от такого рисунка отказалась - возможно, производитель столкнулся с проблемой дальнейшего увеличения ppi.

В своих современных экранах Samsung вернулась к RG-BG пикселям с использованием нового типа рисунка, который был назван Diamond PenTile. Новая технология позволила сделать белый цвет более натуральным, а что касается зазубренных краёв (например, вокруг белого объекта на чёрном фоне были чётко видны отдельные красные субпиксели), то эта проблема была решена ещё проще - увеличением ppi до такой степени, что неровности перестали быть заметны. Diamond PenTile используется во всех флагманах Samsung начиная с модели Galaxy S4.

В завершении этого раздела стоит сказать ещё об одном рисунке AMOLED-матриц - PenTile RGBW, который получается добавлением к трём основным субпикселям четвёртого, белого. До появления Diamond PenTile такой рисунок был единственным рецептом чистого белого цвета, но он так и не получил широкого распространения - одним из последних мобильных гаджетов с PenTile RGBW стал планшет Galaxy Note 10.1 2014. Сейчас AMOLED-матрицы с RGBW-пикселями применяются в телевизорах, поскольку в них не требуется высокий показатель ppi. Справедливости ради, также упомянем, что RGBW-пиксели могут использоваться и в LCD, но примеры использования таких матриц в смартфонах нам не известны.

В отличие от AMOLED, качественные IPS-матрицы никогда не испытывали проблем в качестве, связанных с рисунком субпикселей. Тем не менее, технология Diamond PenTile, вместе с высокой плотностью пикселей, позволила AMOLED догнать и обогнать IPS. Поэтому, если вы выбираете гаджеты придирчиво, не стоит покупать смартфон с экраном AMOLED, у которого плотность пикселей менее 300 ppi. При более высокой плотности никакие дефекты заметны не будут.

Конструктивные особенности

На одних только технологиях формирования изображений разнообразие дисплеев современных мобильных гаджетов не заканчивается. Одна из первых вещей, за которую взялись производители - воздушная прослойка между проекционно-ёмкостным сенсором и непосредственно дисплеем. Так появилась технология OGS, объединяющая сенсор и матрицу в один стеклянный пакет в виде сэндвича. Это дало значительный рывок по качеству изображения: увеличилась максимальная яркость и углы обзора, была улучшена цветопередача. Само собой, толщина всего пакета также была уменьшена, что позволило создать более тонкие смартфоны. Увы, но недостатки у технологии тоже есть: теперь, если вы разбили стекло, поменять его отдельно от дисплея практически нереально. Но преимущества в качестве всё же оказались важнее и теперь не-OGS экраны можно встретить разве что в самых дешёвых аппаратах.

Популярными в последнее время стали и эксперименты с формой стекла. И начались они не недавно, а как минимум в 2011 году: HTC Sensation имел вогнутое в центре стекло, которое, по замыслу производителя, должно было защитить экран от царапин. Но на качественно новый уровень такие стёкла вышли с появлением «2.5D экранов» с загнутым по краям стеклом, что создаёт ощущение «бесконечного» экрана и делает грани смартфонов более гладкими. Такие стёкла в своих гаджетах активно использует компания Apple, и в последнее время они становятся всё более и более популярными.

Логичным шагом в том же направлении стало изгибание не только стекла, но и самого дисплея, что стало возможным при использовании полимерных подложек вместо стеклянных. Тут пальма первенства, конечно, принадлежит компании Samsung с её смартфоном Galaxy Note Edge, в котором была изогнута одна из боковых граней экрана.

Другой способ предложила компания LG, которая сумела изогнуть не только дисплей, но и весь смартфон по его короткой стороне. Однако LG G Flex и его преемник не завоевали популярности, после чего производитель отказался от дальнейшего выпуска подобных аппаратов.

Также некоторые компании стараются улучшить взаимодействие человека с экраном, работая над его сенсорной частью. Например, некоторые устройства оснащаются сенсорами с повышенной чувствительностью, которые позволяют работать с ними даже в перчатках, а другие экраны получают индуктивную подложку для поддержки стилусов. Первая технология активно используется компаниями Samsung и Microsoft (бывшая Nokia), а вторая - Samsung, Microsoft и Apple.

Будущее экранов

Не стоит думать, что современные дисплеи в смартфонах достигли высшей точки своего развития: технологиям ещё есть куда расти. Одними из самых перспективных являются дисплеи на квантовых точках (QLED). Квантовая точка - это микроскопический кусочек полупроводника, в котором существенную роль начинают играть квантовые эффекты. Упрощенно процесс излучения выглядит так: воздействие слабого электрического тока заставляет электроны квантовых точек изменять энергию, излучая при этом свет. Частота излучаемого света зависит от размера и материала точек, благодаря чему можно добиться практически любого цвета в видимом диапазоне. Учёные обещают, что QLED матрицы будут иметь лучшую цветопередачу, контрастность, более высокую яркость и низкое энергопотребление. Частично технология экранов на квантовых точках используется в экранах телевизоров Sony, а прототипы имеются у LG и Philips, но о массовом применении таких дисплеев в телевизорах или смартфонах речи пока не идёт.

Высока вероятность и того, что в ближайшем будущем мы увидим в смартфонах не просто изогнутые, но и полностью гибкие, дисплеи. Тем более, что почти готовые к массовому производству прототипы таких AMOLED матриц существуют уже пару лет. Ограничением же выступает электроника смартфона, которую гибкой сделать пока невозможно. С другой стороны, крупные компании могут изменить саму концепцию смартфона, выпустив что-то вроде гаджета, показанного на фотографии ниже - нам остаётся только ждать, ведь развитие технологий происходит прямо на наших глазах.

С недавних пор в технических характеристиках выбираемого смартфона можно увидеть надпись «OGS». Сегодня эта технология является достаточно перспективной и поэтому широко используется многоими производителями. Так что такое OGS дисплей и какое значение имеют эта загадочная аббревиатура для пользователей?

Как известно, экранный модуль современного смартфона состоит из двух частей: матрицы, которая формирует картинку из пикселей, и тачскрина – элемента, который обеспечивает защиту дисплея от повреждений и реагирует на прикосновения пальцев.

OGS (One Glass Solution – с англ. "решение с одним стеклом») – технология, которая позволяет разместить слой сенсорного стекла не над экраном, а сделать неотъемлемой его частью. Таким образом, достигается уменьшение толщины устройства и улучшаются некоторые потребительские качества дисплея (об этом чуть ниже).

Существует два вида технологии OGS: «сенсор на объективе» (где «объектив» - слой защитного стекла) и «сенсор в ячейке». В первом случае защитное стекло ЖК-панели также служит и сенсором, с внутренней его стороны наносится слой чувствительного покрытия, которое находится в непосредственной близости от кристаллов или диодов (в OLED дисплеях). «Сенсор в ячейке» - это разновидность технологии OGS, при использовании которой чувствительный элемент покрывает тонкое стекло матрицы снаружи, а на него накладывается еще один, защитный слой (нередко это «Gorilla Glass» или «Dragontail»).

Плюсы и минусы дисплев с OGS

Данная технология, безусловно, обладает целым рядом преимуществ:

  • малая толщина;
  • оптимизированное энергопотребление;
  • хорошие показатели цветопередачи;
  • низкий коэффициент преломления, как следствие, хорошие углы обзора;
  • высокая степень прозрачности;
  • защита от загрязнения (образование пыли между дисплеем и тачскрином исключено: для нее там попросту нет места).

Не существует ничего идеального, и технология OGS – тому подтверждение. Разработчикам есть куда развиваться, ведь и недостатки у нее имеются:

Выводы

Таким образом, OGS – технология построения дисплеев, при использовании которой вся конструкция сенсорной панели состоит из одного модуля. Такое решение позволяет уменьшить толщину смартфона, снизить его энергопотребление, улучшить качество картинки на экране.

Также вам понравятся:


Что такое ГЛОНАСС в смартфоне и как им пользоваться
5 советов, как заставить Android-смартфон работать быстрее и дольше

Почему нагревается смартфон: 7 популярных причин

Как из разнообразия современных смартфонов подобрать то, что подходит именно Вам? Сегодня команда bad-android подготовила материал с полезными советами на тему подбора дисплеев.

Как не переплатить за устройство? Как по типу дисплея разобраться чего от него ожидать?

Типы матриц

В современных смартфонах используются три основные типа матриц.

Первая из них под названием - основана на органических светодиодах. Остальные два типа основаны на жидких кристиалах - IPS и TN+film .

Нельзя не упомянуть про часто встречающуюся аббревиатуру TFT .

TFT - это тонкопленочные транзисторы, управляющие субпикселями дисплеев (субпиксели отвечают за три основных цвета, на основание которых формируются "полноценные" "многоцветные" пиксели, о которых мы поговорим чуть позже).

Технология TFT применяется во всех трех типах матриц, перечисленных выше. Именно поэтому часто встречающееся сравнение TFT и IPS является абсурдным по сути.

Много лет основным материалом для TFT-матриц являлся аморфный кремний. На данный момент запущено усовершенствованное производство TFT-матриц, в котором основной материал - поликристалличесий кремний , значительно увеличивающий энергоэффективность. Также уменьшился непосредственно размер транзисторов, что позволяет достигать высочайших показателей ppi (плотности пикселей).

Итак, с базой матриц разобрались, настало время поговорить непосредственно о типах данных матриц.

TN+film матрица

Именно эти матрицы появились первыми в смартфонах. На данный момент они остаются самыми примитивными и, соответственно, дешевыми.

Достоинства:

    Доступная стоимость

Н едостатки:

    Малые углы обзора (максимум 60 градусов)

    Инвертирование изображения даже при небольших углах наклона

    Низкий уровень контрастности

    Скудная цветопередача

Большинство производителей практически отказалось от использования данного типа матриц из-за слишком большого количества недочетов.

IPS матрица

На данный момент именно этот тип матриц является наиболее распространенным. Также IPS матрицы иногда обозначаются аббревиатурой SFT .

История IPS -матриц берет свое начала несколько десятилетий назад. За этот период было разработано множество различных модификаций и улучшений IPS -дисплеев.

При перечислении недостатков и достоинств IPS необходимо учитывать конкретный подтип . Обобщая, для перечня сильных сторон IPS возьмем наилучший подтип (соответственно, самый дорогостоящий), а для минусов будем иметь в виду дешевый подтип.

Достоинства:

    Отличные углы обзора (максимум 180 градусов)

    Качественная цветопередача

    Возможность выпуска дисплеев с высоким ppi

    Неплохая энергоэффективность

Недостатки:

    Выцветание картинки при наклонах дисплея

    Возможно перенасыщение или наоборот недостаточная насыщенность цвета

AMOLED матрица

Матрица обеспечивает наиболее глубокий черный цвет, сравнительно с двумя другими типами матриц. Но так было не всегда. Первые AMOLED-матрицы обладали неправдоподобной цветопередачей и недостаточной глубиной цвета. Присутствовала кислотность картинки, слишком интенсивная яркость.

До сих пор из-за внутренних некорректных настроек некоторые дисплеи по восприятию практически идентичны к IPS. А вот в super-AMOLED дисплеях все изъяны успешно пофиксили.

При перечне достоинств и недостатков возьмем обычную AMOLED-матрицу.

Достоинства:

    Наиболее качественная картинка среди всех существующих типов матриц

    Низкое энергопотребление

Недостатки:

    Изредка встречающийся неодинаковый срок работы светодиодов (разных цветов)

    Необходимость тщательного настраивания AMOLED дисплея

Подведем промежуточный итог. Очевидно, что лидируют по качеству изображения матрицы. Именно AMOLED дисплеи устанавливаются на самые топовые устройства. На втором месте находятся IPS матрицы, но с ними следует быть внимательным: производители редко указывают подтип матрицы, а именно это играет ключевую роль в итоговом уровне изображения. Однозначное и твердое "нет" следует сказать девайсам с TN+film матрицам.

Субпиксели

Определяющим фактором в конечном качестве дисплея часто являются скрытые характеристики дисплеев. На восприятие изображения сильное влияние оказывают субпиксели .

В случае с LCD ситуация достаточно простая: каждый цветной (RGB ) пиксель состоит из трех субпикселей. Форма субпикселей зависит от модификации технологии - субпиксель может иметь форму "галочки" или прямоугольника.

В реализации дисплеев в плане субпикселей все несколько сложнее. В этом случае источником освещения выступают сами субпиксели. Как известно, человеческий глаз менее чувствителен к синему и красному цвету, в отличие от зеленого. Именно поэтому повторение паттерна IPS субпикселей значительно повлияло бы на качество картинки (естественно, в худшую сторону). Для сохранности реалистичности цветопередачи была изобретена технология .

Суть технологии заключается в использовании двух пар пикселей: RG (red-green) и BG (blue-green), которые, в свою очередь, состоят из соответствующих субпикселей соответствующих цветов. Применена комбинация форм субпикселей: зеленые имеют вытянутую форму, а красные и синие практически квадратные.

Технология оказалась не слишком-то и удачной: белый цвет был откровенно “грязным”, а также появились зазубринки на стыках разных оттенков. При невысоком показателе ppi становилась видна сетка из субпикселей. Такие матрицы были установлены на ряд смартфонов, в том числе флагманов. Последним флагманом, которому “посчастливилось” заполучить PenTile-матрицу стал Samsung Galaxy S III .

Естественно, что оставлять ситуацию с некачественной реализацией субпикселей в таком же состоянии было нельзя, поэтому вскоре был произведен апгрейд выше описываемой технологии, получивший приставку Diamond .

При помощи увеличения ppi Diamond PenTile позволила избавиться от проблемы с зазубренными границами между цветами, а белый стал гораздо “чище” и приятнее глазу. И именно эта разработка установлена во все флагманы компании Samsung, начиная с Galaxy S4.

А вот IPS -матрицы хотя и считаются в целом слабее ’овских, однако, с такими проблемами никогда не сталкивались.

Какой вывод можно сделать? Следует обязательно обращать внимание на количество ppi в случае приобретения смартфона с -матрицей. Качественная картинка возможна только при показателе от 300 ppi . А вот с IPS матрицами таких строгих ограничений нет.

Инновационные технологии

Время не стоит на месте, талантливые инженеры продолжают кропотливо работать над улучшением всех характеристик смартфонов, в том числе и над матрицами. Одной из последних серьезных разработок является технология OGS .

OGS представляет из себя воздушную прослойку между самим экраном и проекционно-емкостным сенсором. В данном случае технология оправдала ожидания на 100%: увеличилось качество цветопередачи, максимальная яркость и углы обзора.

И за последние несколько лет OGS настолько внедрилось в смартфоны, что не встретить реализацию дисплея “гамбургером” с начинкой из воздушной прослойки можно разве что на самых простых устройствах.

В поиске оптимизации дисплеев конструкторы наткнулись на еще одну интересную возможность улучшить картинку на телефонах. В 2011 году стартовали эксперименты над формой стекла. Пожалуй, наиболее распространенной формой стекла среди необычных стало 2.5D - при помощи загнутых краям стекла грани становятся более гладкими, а экран обьемным.


Компания HTC выпустила смартфон Sensation , стекло которого было вогнуто в центре дисплея. По мнению инженеров HTC, таким образом увеличивается защищенность от царапин и ударов. Но широкого применения вогнутое к центру стекло так и не получило.

Более популярной стала концепция изгибания самого дисплея, а не только стекла, как это было сделано в . Одна из боковых граней дисплея получила изогнутую форму.


Весьма интересной характеристикой, на которую следует обратить внимание при покупке смартфона, является чувствительность сенсора . В часть смартфонов устанавливается сенсор с повышенной чувствительностью, что позволяет полноценно пользоваться дисплеем даже в обычных перчатках. Также часть устройств оснащается индуктивной подложкой для поддержки стилусов.

Так что для любителей попереписываться на морозе или пользоваться стилусом чувствительный сенсор однозначно пригодится.

Известные истины

Не секрет, что разрешение экрана также сильно влияет на конечный уровень изображения. Без лишних комментариев предлагаем Вашему вниманию таблицу соответствия диагонали дисплея и разрешения.

Заключение

Каждая матрица имеет свои особенности и срытые характеристики. Следует быть осторожным с -дисплеями, вернее, с показателем плотности пикселей ppi: если значение менее 300 ppi , то качество картинки Вас откровенно разочарует .

Для IPS -матриц важен подтип , причем в зависимости от подтипа стоимость смартфона логично пропорционально увеличивается.

Изогнутое стекло 2.5D значительно повысит привлекательность картинки, как и технология OGS .

Вопрос размера дисплея - сугубо индивидуальный, но при многодюймовых "лопатах" уместным будет высокое разрешение.

Желаем вам приятных покупок, друзья!

Оставайтесь с нами, впереди еще много интересного.

Пятый урок первого шага нашего учебного курса мы решили посвятить одной из самых важных деталей смартфона, которая требует к себе самого пристального внимание – экран. Именно через дисплей мы получаем доступ ко всем функциям мобильного гаджета: звонки, набор смс, выход в Интернет, просмотр фото и видео и так далее.

Но знаете ли вы, что такое разрешение дисплея, чем IPS отличается от AMOLED и как подобрать для себя оптимальную диагональ? В нашей статье мы подробно разберем, что из себя представляет экран смартфона, и на какие параметры дисплеев стоит обратить внимание при покупке нового смартфона.

Экран современного мобильного устройства представляет собой своеобразный «бутерброд»: сочетание слоев, каждый из которых выполняет определенную функцию:

  • Тачскрин или сенсорная панель
  • Матрица
  • Источник света

Тачскрин находится непосредственно под пальцами пользователя. Долгое время на рынке мобильных телефонов можно было встретить два типа сенсорных панелей: резистивные и емкостные. Первые реагировали на силу нажатия, вторые – на изменение электрического импульса при прикосновении. Учитывая, что сильное нажатие могло запросто повредить хрупкий тачскрин, резистивные экраны становились все менее популярны, и сейчас смартфоны с подобным типом сенсорной панели практически не выпускаются.

В то же время емкостные тачскрины выдерживают около 200 миллионов нажатий. Правда, самый ощутимый недостаток данного типа – смартфоном невозможно пользоваться в перчатках, так как ткань не пропускает электрические импульсы.


Некоторые производители решают данную проблему, оснащая свои топовые флагманы 3D-touch-дисплеями. Такие экраны реагируют как на нажатие, так и на изменение емкости.

Матрица дисплея изменяет количество света, проходящее через каждый пиксель от источника к тачскрину, иными словами, регулирует прозрачность пикселей. В данном случае, на конечное качество изображения весомо влияет наличие или отсутствие воздушной прослойки между сенсором и матрицей.

Если прослойка есть, свет последовательно проходит через три среды: стекло матрицы, воздух, стекло тачскрина. Соответственно, у каждой среды свой коэффициент преломления и отражения света. Поэтому смартфоны с воздушной прослойкой не всегда могут похвастаться насыщенной и яркой картинкой.

Сейчас все чаще смартфона оснащаются экранами, в которых сенсор склеен с матрицей (OGS - one glass solution). В этом случае, свет от источника преломляется и отражается только от одной внешней среды, следовательно, качество изображения становится выше.

OGS-экраны обладают одним существенным недостатком. Если уронить телефон с таким экраном, есть большая вероятность, что сенсорная панель повредится вместе с матрицей, что значительно усложняет дальнейший ремонт. Тогда как у экрана с воздушной прослойкой, как правило, разбивается только тачскрин, который можно заменить даже в домашних условиях.

Последним слоем экрана является сложная лампа, которая является источником света для жидких кристаллов. С другой стороны, с каждым годом все большую популярность приобретают экраны на светодиодах, которые не требуют источника света, так как светятся сами.

Типы экранов смартфонов

К 2017 году сложились два основных типа экранов: LCD или ЖК, и OLED. Как уже говорилось выше, первые основаны на жидких кристаллах, вторые – на светодиодах. В свою очередь LCD дисплеи делятся на три основные группы:

TN – самая простая и доступная технология изготовления LCD-экранов. Такие дисплеи отличаются мгновенным откликом и невысокой себестоимостью. С другой стороны, у TN-экранов не самые большие углы обзора (около 120-130 градусов). Как правило, такие дисплеи устанавливают в доступные бюджетные смартфоны.


Например, 4,5-дюймовым TN-дисплеем оснащен, пожалуй, самый доступный смартфон от британской компании Fly – Nimbus 14 , который можно приобрести всего за 3 290 рублей. Такой гаджет станет отличным решением, если нужен смартфон начального уровня для самых простых задач: проверка почты, работа с несложными приложениями, общение в чатах и мессенджерах.


Один из самых распространенных типов экранов – IPS. Такие дисплеи отличаются высококачественной цветопередачей (особенно, если между сенсором и матрицей нет воздушной прослойки), а также широкими углами обзора до 178 градусов. Несколько лет назад IPS была довольно дорогостоящий технологией, однако сейчас данный тип можно повсеместно встретить даже в бюджетных аппаратах.

Среди новинок бренда Fly одним из самых примечательных смартфонов с IPS-дисплеем стоит назвать модель , которая сейчас доступна всего за 8 990 рублей. 5.2-дюймовый IPS-дисплей с приятным скруглением по краям выполнен по технологии Full Lamination – между тачскрином и матрицей убрана воздушная прослойка, за счет чего удалось добиться реалистичной, сочной и контрастной картинки.

Кстати, в данном смартфоне удалось решить проблему повышенной уязвимости такого безвоздушного соединения. Экран Fly Selfie 1 защищен прочным стеклом Panda Glass, которому не страшны небольшие удары и падения.


Технология PLS являлось разработкой компании Samsung. По сути, это тот же IPS, только модифицированный для удешевления производства. Правда, особой популярности данная технология так и не получила.

OLED

OLED-дисплеи делятся на три основных типа:

  • AMOLED
  • SuperAMOLED
  • FOLED

В основе технологии OLED лежат миниатюрные светодиоды, который сами излучают свет. Благодаря отсутствию внешнего источника света, светодиодные дисплеи в смартфонах выходят тонкими, соответственно, уменьшая габариты самого гаджета. Также к плюсам светодиодов относят невысокое энергопотребление, высокую контрастность и быстрый отклик.

С другой стороны, следует учитывать неприятные минусы такой технологии:

  • OLED-дисплеи более дороги в производстве
  • Со временем, светодиоды начинают гаснуть, из-за чего искажается изображение
  • На ярком свету OLED-дисплеи засвечиваются сильнее, чем LCD.

Работа AMOLED дисплеев основана на активной матрице из тонкопленочных транзисторов. Такие экраны отличаются глубоким черным цветом, так как в процесс формирования изображения часть светодиодов отключается, что также снижает нагрузку на батарею.

В SuperAMOLED дисплеях убран воздушный слой для повышения яркости и четкости изображения. А экранами будущего сейчас все чаще называют FOLED-дисплеи. Данная технология позволяет создать гибкие экраны на основе органических светодиодов.


Размеры экранов смартфонов. Разрешение

От данного параметра напрямую зависит, для каких целей приобретается смартфон. Условно, все смартфоны по размеру экрана можно разделить на две большие группы:

  1. До 5,2 дюймов
  2. От 5 до 7 дюймов

Экран до 5,5 дюймов позволяет сделать смартфон компактным и легким. Таким гаджетом удобно управлять одной рукой даже во время движения. Часто небольшие смартфоны покупают в качестве первого мобильника для ребенка – держать, например, 4-дюймовый смартфон в детской руке гораздо удобнее, чем большой, «взрослый» гаджет.

Если диагональ экрана смартфона достигает 6-7 дюймов, такой гаджет называют фаблетом, или планшетофоном. На большом экране особенно удобно смотреть видео, обрабатывать и просматривать фотографии, играть в игры с насыщенной графикой, создавать и редактировать текстовые файлы и многое другое.

Выбирая смартфон по размеру, важно обращать особое внимание на разрешение экрана, которое определяется количеством точек на единицу площади. Так, если у смартфона большой экран, но невысокое разрешение, изображение будет нечетким и зернистым. В смартфонах разрешение экранов обозначает параметром dpi – количество точек на дюйм.


На сегодняшний день, существует 4 самые распространенные разрешения дисплеев:

  • 320х480 точек (HVGA) – редко, но встречается в самых дешевых смартфонах. Картинка на таком экране выходит довольно зернистой.
  • 480х800, 480х854 (WVGA) – изображение неплохо смотрится на небольших экранах с диагональю до 4 дюймов.
  • 854 x 480 (FWVGA) – вполне комфортное качество на дисплеях до 4,5 дюймов.
  • 720х1280 (HD) – смартфоны с таким разрешением встречаются, пожалуй, чаще всего. Экран с разрешением HD обеспечивает высокий уровень детализации, даже если диагональ дисплея составляет 5,5 дюймов.
  • 1080х1920 (FullHD) – данное разрешение обеспечивает самое высокое качество изображения, что особенно заметно на смартфонах с 5-дюймовыми экранами.

Ярким примером последнего можно назвать модель Fly Cirrus 13 . Мощный, эффектный и доступный всего за 8 490 рублей, смартфон оснащен ярким и контрастным 5-дюймовым IPS-дисплеем с разрешением FullHD, в котором также отсутствует воздушная прослойка между слоями. Так что пользователь способен ощутить каждую деталь изображения. Чтобы не повредить уязвимое соединение матрицы и тачскрина, экран Fly Cirrus 13 защищен ударопрочным стеклом Dragontrail, которое по прочности превосходит популярное стекло Gorilla Glass в 6 раз.


Теперь вы знаете, какими бывают экраны смартфонов, и на что следует обратить внимание, выбирая новый гаджет. В следующий раз мы расскажем все о процессорах мобильных устройств. Вы узнаете, почему не стоит путать термины «процессор» и «чипсет», как 4-ядерный процессор может «положить на лопатки» 8-ядерный, а также, на что влияет оперативная память процессора.

Технология Glass Solution (OGS) позволяет создавать недорогие проекционно-емкостные сенсорные дисплеи. Как это работает?

Есть несколько причин, по которым емкостные сенсорные дисплеи намного дороже, чем резистивные. Одна из причин – большая поверхность склеивания защитного стекла с датчиком касания. Если при склеивании происходит ошибка, то и защитное стекло, и дорогостоящий сенсор отправляются на утилизацию. Компания Densitron – одна из немногих, которая поставляет дисплеи и сенсоры, которые можно разделить в случае ошибочного действия на этапе склеивания. Благодаря этому значительно снижается количество бракованных изделий.

Все компоненты – на одной стеклянной подложке

С появлением технологии OGS емкостные сенсорные панели вышли на тот же уровень стоимости, что и резистивные. Вместо склеивания нескольких слоев – сенсорной подложки и пленки с защитным стеклом – OGS позволяет объединить все компоненты на одной стеклянной подложке. Таким образом, стоимость производства значительно снижается. OGS-дисплеи по запросу клиента могут принимать различную конфигурацию, требуемую жесткость и прочность в зависимости от толщины стеклянной подложки.

Наряду с простотой механической конструкции OGS-панели обладают еще одним преимуществом: они очень тонкие. В качестве стандартной толщины стекла приняты значения 1,2 мм и 1,8 мм. Если нужен особенно прочный дисплей – например, для банкоматов – производится стекло толщиной 3,4 мм. Возможно изготовление миниатюрных дисплеев толщиной менее 1,2 мм – например, для умных часов. Размеры OGS-экрана могут достигать 480 мм х 340 мм. Таким образом, диагональ экрана может составлять от менее 1,44"" (3,66 см) до 15,6"" (39,94 см).

Свобода выбора формы

Как и в случае обычных проекционно-емкостных датчиков (P-CAP), область сенсора может покрывать только площадь дисплея, а может покрывать еще и другие рабочие поверхности. Технология OGS позволяет проделать прямо в экране отверстие или сделать закругления. Также возможно проводить химическую закалку поверхности и любую другую обработку защитного стекла, включая полихромную печать на нем. Технология OG Sможет использоваться для создания PM- и AMOLED-дисплеев.

Широкие возможности создания различных форм предполагают применение в самых различных отраслях. Экран OGS может принимать почти любую плоскую форму. Если защитное стекло доходит до самой границы изделия, то после соответствующей шлифовки и полировки оно будет служить стильным элементом украшения изделия. Кроме того, стекло обладает несомненными достоинствами: высокой твердостью (до 9Н) и высокой прочностью. Было успешно проведено испытание, в ходе которого на стекло толщиной 1,1 мм с высоты 1 м падал стальной шарик.

Благодаря защитному стеклу дисплей и сенсор становятся водо- и пыленепроницаемы. Полная герметичность обусловливает соответствие классу влаго- и пылезащищенности IP65. После соединения контактов дисплея / сенсора защитное стекло приклеивается к задней части корпуса. Склеивающая лента 3M даже может быть заранее наклеена одной стороной на корпус, чтобы при окончании сборки можно было просто снять защитную пленку и наклеить сенсорный дисплей.

Проводники из индий тин-оксида (ИТО) толщиной всего 5 мкм позволяют сделать сенсор очень тонким. Дисплей на основе OGS-технологии состоит из различных слоев: ИТО-электродов, сквозных соединений, слоев изоляции и слоев серебра. Процесс должен постоянно находиться под контролем, поскольку структура дисплей состоит из очень тонких и сложных структур. На предпрятии Densitron в городе Шэньчжень специалисты добиваются высочайшей точности: выход продукта составляет почти 100%.

Мультисенсор для 10 пальцев

Соединения между отдельными электродами, расположенными параллельно и перпендикулярно друг другу, выполнены с использованием серебрения, поэтому они могут контактировать и посредством углеродных включений. При проектировании OGS-стекла необходимо предусматривать достаточно места для проводников. Обычные проекционно-емкостные предполагают меньше места для проводников на поверхности сенсорной зоны, поскольку проводники проводятся на двух независимых слоях, что облегчает их разводку.

Обычные контроллеры проекционно-емкостных дисплеев монтируются вместе с сенсором на плоский кабель и подходят для Android, Microsoftи Linux. Дисплей справляется с большим количеством одновременных касаний (до 10). Предусмотрены разъемы I 2 Cили USB. С учетом количества каналов контроллера (от 30 до 68) обслуживание дисплеев на базе проекционно-емкостной технологии должно осуществляться не просто в тонких резиновых перчатках, но и в толстых шерстяных перчатках (наличие воды или грязи не учитывается). С помощью программного обеспечения возможно установить такие параметры, как чувствительность, обнаружение резкого изменения яркости (случайный набор команд) и минимальный размер пальцев. В результате удобство обслуживания сохраняется как при обычных условиях, так и при нахождении дисплея в агрессивной среде.

Преимущества дизайна защитной оболочки

Экраны на основе OGS – это идеальное решение при необходимости создания нестандартного дизайна. Существуют еще тонкопленочные и проекционно-емкостные модули с обычным дизайном защитного стекла, края которого прижаты черной рамой, а размер и форма зависят от формата дисплея. OGS-модуль легко интегрировать в прибор с дисплеем любой формы. Это прекрасная возможность сэкономить, учитывая величину затрат на любые нестандартные конструкции. В качестве альтернативного варианта можно сначала использовать стандартный дисплей, что также снизит начальную стоимость прибора.

Проекционно-емкостные технологии и особенно OGS идеально подходят для применения в медицине, поскольку благодаря отсутствию грязных рамок на фронтальных поверхностях экранов не возникает необходимости использования агрессивных моющих средств, которые могут попасть внутрь прибора. Для мобильных устройств OGS-экраны также подходят идеально: поскольку защитное стекло и сенсор имеют толщину не более 1,2, устройство будет тонким и легким.